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Flow of an elastico-viscous fluid between 
torsionally oscillating disks 

By K .  R .  FRATER 
Department of Applied Mathematics, University College of Swansea 

(Received 17 December 1963) 

The flow of an incompressible elastico-viscous fluid between two parallel, infinite 
disks is investigated when one disk is held at rest and the other performs rotary 
oscillations about their common axis. It is found that the purely periodic 
primary motion has associated with it a secondary steady velocity distribution, 
as well as a secondary periodic motion with twice the frequency of the primary. 
The steady component of the secondary flow is discussed in detail. 

1. Introduction 
In  a recent paper, Rosenblat (1960) examined the flow of a Newtonian fluid 

between two parallel, infinite disks performing torsional oscillations. Two specific 
cases were studied: (i) when one disk performs (fairly small) torsional oscillations 
and the other is at rest, (ii) when both disks oscillate with the same amplitude 
and frequency and with a phase difference of 180 '. Rosenblat found that solu- 
tions satisfying the Navier-Stokes equations and the boundary conditions could 
be obtained by assuming that certain non-linear terms could be neglected. It 
was found that the oscillatory rotational motion of the disks induced a radial- 
axial secondary flow, which had a mean steady component as well as a fluctuating 
component. Similar effects have more recently been demonstrated theoretically 
by Bhatnagar & Rajeswari (1962), and Srivastava (1963). Both of these papers 
were concerned with a special case of the Rivlin-Ericksen 'second-order ' fluid. 

The purpose of the present paper is to investigate the flow of a fluid with 
marked transient elasticity of shape. It is to be expected that a fluid with elastic 
properties will behave somewhat differently from any inelastic viscous fluid 
when subjected to any kind of oscillatory flow. Also, under the conditions con- 
sidered by Rosenblat, because of the rotational character of the motion, there is 
the possibility of a sort of Weissenberg effect taking place. Hence it is of interest 
to study the effect of torsional oscillations on an elastico-viscous fluid contained 
between a pair of parallel discs. 

The idealized incompressible elastico-viscous fluid considered here has the 
following equations of state relating the stress tensor X i ,  and the rate-of-strain 
tensor Eik = a( u,*i + q.J: 

= p g i k ,  (1) 
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Here Ui denotes the velocity vector, g, the metric tensor, Pik the part of the stress 
tensor related to change of shape of a material element, and P an isotropic 
pressure; qo is a constant having the dimensions of viscosity and A,, A,, p0 are 
constants having the dimension of time. The derivative b / b T  is the convected 
time-derivative (Oldroyd 1950) defined thus: if Bik is any contravariant tensor, 
then we have 

where QfTc = Q( U& - 
Oldroyd (1958) has shown that there are idealized fluids of the class defined by 

equations (1) and (2) which in theory exhibit the following non-Newtonian 
flow properties that have been observed in polymer solutions and some other 
elastico-viscous fluids. They have a variable apparent viscosity in simple shearing, 
decreasing with increasing rate of strain from a limiting value q0 at low rates to a 
limiting value ql ( =  qoAB/A, < yo) at high rates; they exhibit the Weissenberg 
climbing effect, and have a distribution of normal stresses associated with an 
extra tension along the streamlines in many types of steady simple shearing flow, 
having an isotropic state of stress in planes normal to the streamlines. For flow 
at small shear rates, the fluids are characterized by three constants, a coefficient 
of viscosity yo, a relaxation time A,, and a retardation time A,. If  the above pro- 
perties are to be represented by the equations of state over the whole range of 
rates of shear, Oldroyd found that the constants in equation (2) must satisfy the 

is the vorticity tensor. 

relations 
T o  > 0, A, > A, 3 &Al > 0, po > 0. 

Equation ( 2 )  is the simplest possible equation of state describing an elastico- 
viscous fluid with the above properties and has been chosen mainly for mathe- 
matical convenience. 

In  the present paper we shall consider only case (i) of the boundary conditions 
treated by Rosenblat. Our method of analysis is slightly different from that of 
Rosenblat, in that we shall expand quantities in powers of Q, where Q is the 
angular amplitude of the motion of the disk. 

2. Equations of motion 
Consider a mass of elastico-viscous fluid, which is characterized by the equa- 

tions of state ( l ) ,  (a), bounded by two parallel disks which are represented by the 
planes Z = 0,Z = a in a cylindrical-polar co-ordinate system ( R , O , Z ) .  The axis 
R = 0, perpendicular to the disks, is taken to be an axis of symmetry for the whole 
motion. We suppose the physical components of the velocity vector are U ,  V ,  
W in this system of co-ordinates. 

If the disk Z = 0 performs oscillations about the axis R = 0, with frequency 
n/2n and angular amplitude SZ, while the disk Z = a, remains at  rest, then the 
boundary conditions are 

1 U = W = 0, V =nQReinT on Z =  0,  

U = W = V = O  on Z = a .  
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The convention is adopted that real parts are to be understood whenever complex 
expressions are quoted for physical quantities. 

Equations ( 2 ) ,  the usual equations of motion and continuity and the boundary 
conditions (3) ,  are first reduced to non-dimensional form by the following 
substitutions : 

R = ar, 2 = ax, T = n-It, 

4 i k )  = ronP(ik), 
U = anu, W = anw, V = anQv, 

A, = ah1, po = €AI, 

P = pn2a2p, 

where Pik denotes the physical components of the partial stress tensor and a, 8 

are clearly two positive dimensionless physical constants of the material. From 
this point the dimensionless form of the physical components of the partial stress 
tensor will be denoted by pw, pez, etc. We then obtain the following set of ten 
equations relating six components of partial stress, three components of velocity 
and an isotropic pressure: 
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(13) 
a a 
ar az - (ru) + - (rw) = 0, 

where R, = pna2/yjo is a Reynolds number for the flow, and X = h,n can be thought 
of as a dimensionless measure of the ‘memory’ of the elastico-viscous fluid, 
based on the use of the period of oscillation as the natural unit of time. The 
associated boundary condit,ions are 

I u = U I  = 0, 21 = reit on x = 0, 

u = u = w  on z = l .  

3. Solution of the equations 
In order to obtain an approximate solution of the above equations, it is now 

assumed that $2 is sufficiently small so that we may expand quantities in the form 
of power series in a. Then, from the form of the equations (a)-( 13) and the bound- 
ary conditions (la), we shall expect u, PI, 10 and the p5,; to be given by 

u = r f ( z )  eit + Q2f1(v, z ,  t )  + . .., u = Q2g(r,z, t )+ ..., w = Q%(r,z , t )+ ..., 
prr = Q2G(r, z, t )  + ... ) pea = Q2N(r,  z, t )  + . . ., Po$ = Q2K(r, z, t )  + . . ., 
p ,  = QrF(z) eit + Q3F1(r, z ,  t )  + . .., pre = Q3M(r,  z, t )  + . .., p,, = @L(r, z ,  t )  + . . ., 

p = C12iV(r, z ,  t )  + . . . . 
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If these expressions are substituted in equations (4)-(13) and the boundary 
conditions (14), and coefficients of !2, Q2, etc., are equated, the following system 
of linear partial differential equations is obtained: 

aH ah a2h 
H + S -  = 2 - + 2 g S -  

at aZ atax? 

( l + i S ) P  = ( l+ igS) f ' ,  (19) 

+- --(rL)+- , 
ah=-a2v at aZ R, [ l a  r ar aH1 az - 

iR, f = F', (22) 
a a 
- ar (rg) + - ax  (rh) = 0, (23) 

where a prime denotes differentation with respect to z. The boundary conditions 
become 

I f = O ,  g = O ,  h=O on z = 1 ,  

f = 1 ,  g = O ,  h = O  on z = O .  
(24) 

The primary $ow 
Eliminating F from equations (19) and (22) gives the following ordinary differ- 
ential equation for f: 

f "= -  a2R, f, (25) 

where a2 = - i( 1 +is)/( 1 + i d ) .  (26) 

The solution of equation (25) that satisfies the boundary conditions (24) is 

f = sin [ a ~ i ( 1  -z) l /s ina~%. 

F = iR8 cos [a@( 1 - z)]/a sin aRB. 

(27) 

Also, from equation (19), we obtain 

(28) 

Hence, with an error of the order of !2, we have in real terms 

[(cos ( la1 Riz cos x) cosh [ I  a1 Ri(  2 - z )  sin x] 
- cos[ IaIRg( 2 - z )  cos x] cosh (la1 Rtz sin x)} cos t 

- sin( la1 Riz  cos x) sinh [ la1 R t ( 2  - z )  sin x]} sin t] 
+ (sin [la/ R t ( 2  - z )  cos x] sinh (la1 RBz sinx) 

cash (2 I a1 R$ sin x) - cos (2 la1 Ri cos x) > (29) 2, - _ _ _ _ _ _ _ ~ ~  

r 
- 

12-2 



180 K.  R. Prater 

where, from equation (26), 

la12 = {(1+S2)/(1+aW2)}4,  231 = -&~+tan-lS-tan-laX. 

For large R,, (29) becomes 

v/r - exp(- IcxIR$zsin$)cos(t- lalR$zcos#), (30) 

where $ = -x, 0 < $ < $7~. In  the case of a viscous fluid, Rosenblat has shown 
that (30) is a valid approximation to (29) for R, > 20. Since we are more inter- 
ested in high-frequency oscillations, i.e. large R, for given a, 7, and p, the 
asymptotic form of (29) would be quite suitable for the purpose of computation. 

The secondary flow 
Using the fact that, if z,, z2 are any two complex numbers, 

(Rez,) (Rez,) = +Re (z1X2) + &Re (z1x2), 
we have 

wherefdenotes the complex conjugate off, etc. Hence from equations (15)-(23) 
we expect G, K ,  H ,  g and h to be of the form 

G = G,(r, z )  + G2(r, z )  e2it, 

g = g,(r, z )  + g2(r, z )  e2it, 

K = Kl(r ,  z )  + K2(r,  z )  eZg, 

h = h, ( r ,  z )  + h2(r, z )  eZit, 

H = Hl(r ,  z )  + H2(r,  z )  e2it, L = Ll(r, z )  + L2(r, z)e2it, I (32) 

and, following Rosenblat, we shall assume N to be of the form 

N = N,(z, t )  + +r2(N, + N,e2it), (33) 

where N,,  N ,  are constants. It follows that the purely periodic primary motion 
has associated with it an additional steady velocity distribution, as well as a 
periodic motion with twice the frequency of the primary. We shall consider, in 
the present paper, only the steady component of this secondary flow. 

Substituting the expressions (32) and (33) into equations (15)-(23) and equa- 
ting time-independent parts, we obtain the following equations 

- -g-(ff) 1 = 

2(Ygl)/ar + a(rh,)/az = 0. 

Equations (34)-( 39) can clearly be satisfied by writing 

g, = rd+/dz, h ,  = - 2+, (40) 
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where @ = $(z).  Eliminating GI, L, and K ,  from equations (34)-(39) and using 
(40), we obtain the following ordinary differential equation for $ 

d3@ldz3 = RON,  - &R, f f + S ( f ’ P  - vf’f’). (41) 

@== 0, a $ / d z = O  on z =  0, z =  1.  (42) 

This equation must be solved subject to the boundary conditions 

Now, from (37) and (28), we have 

00s [3lal R$( 1 - x )  cos x] - cosh [31a(Ri ( 1  - z )  sin x] 
cos(Z(alR$cosX)-cosh(31al RtsinX) 

ff= __ _ _ _ ~  

cos [2(al R$( 1 - x )  cos x] + cosh [2(al Ri( 1 - z )  sin x] 
cos (3 lalR8 cos x) - cosh (2 IalRi sin x) 

-- 

cos [2lal R% (1 - x )  cos x] + cosh [21alRt (1 - z )  sin x] 
cos (21011 RbcosX)-cosh (31alR$sinX) 

yF = R, sin 2 x  

Substituting the above expressions into equation (4l), we obtain 

d3@/dz3 = N ,  - ~ ~ [ C O S  qh - cash bh1-l [p, cos qh( 1 - Z )  -p2 cash bh( 1 - z ) ] ,  (43) 
where h2 = 2R,, q = J21al cosx, b = JB la l  sinx, 

,ul = l-25(sinZx+vla12), p2 = 1+2X(sin2~+vla12). 
The solution of (43) that satisfies the boundary conditions (40) is given by 

$ = (coshbh-cosqh)-l 

also N ,  is given by 

cosh 6h + 

(45) 

Differentiating (44) with respect to z ,  we find 

@’ = (coshbh-cosqhf-l 

+- 

(46) 

From the equation of continuity and (40) it follows that the streamlines of the 
steady radial-axial secondary flow are given by 

r2@ = const. (47) 
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4. Discussion 

(45) and (46) for R, > 20, and these give the approximations 
For computational purposes, we may use the asymptotic expansions of (44), 

$ N &Ql{z( 1 - z ) ~  - [( 1 + 22)  (1 - x ) ~  - exp ( - 2 JR,(a ( z  sin q5)]/(2J.Rola 1 sin $)I, 

$‘ - (45) 

N ,  N (3Q1/2R0) (1 - l/JRolal sin q 5 ) ,  ( 50 )  

where Ql = [I - 2S(sin 2q5 -ala12)]/(21a12sin2q5). (51) 

1 - x )  ( 1  - 32) + 341 - z)/(,/R,lal sin q 5 )  - exp( - 22/R,lal zsin $)I, (49) 

Now, from equation (26) we obtain 

and it follows that 
2# = &IT - tan-l S + tan-l as, 

hence I - %‘(sin 2$ - alaI2) = 1 - 2S( l -  a)/[( 1 + S2)* (1 + cr2S2)*]. 

From (51) we find that Ql will vanish when 

u ~ X ~ - ( ~ - S ~ + ~ V ~ ) X ~ + ~  = 0, 

and for this equation for S to have real roots, we must have 

(3 - 8u + 3a2)2 2 4u2; 

a 6 +. 
since a is a positive number less than unity, 

(53) 
Hence we find that, if cr < *) there exist certain real values of 8 that will make 
Q1 vanish; and when Ql does vanish, equations (45)) (49) and (50) give an in- 
adequate approximation and must be replaced by 

7,b = Q2exp(-2,/R,Ialsinq5) 

+-- singh(1-z) - ( 1  -z)2 (1 + 22) sinqh 
qh 

@‘ = $Q2 exp ( - 2JRol a( sin $) [( 1 - 32) (1 - z )  cos qh - z(2 - 32) 
- cos qh( 1 - z )  + (6/gh) z( 1 - z )  sinqh], ( 5 5 )  

N ,  = 3(Q2/h3)exp( -2~R0sinq5)[h+hcosph-3sinph/q],  (56) 

where Q2 = (1 + .S(sina~-ala[2))/ala12cos2q5. (57) 

When a < Q, Ql vanishes for two distinct values of S ;  solving ( 5 2 ) ,  we find the 
critical values of S are 

(3-X0-+3a2)T,/[(3-8a+3a2)2-4a2] * I .  S,,S, = [ - -- ~- _____ 
B a 2  

The way in which Ql varies with S in the elastico-viscous cases a = 8, & and the 
Newtonian case (a = l),  is illustrated in figure 1. 
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We now see that, if a < Q, the direction of the steady component of the second- 
ary flow behaves as follows. When S < S,, the flow is in a positive sense (if we 
agree to describe the direction of flow in the case of a Newtonian fluid as in a 
positive sense). When S, < S < A",, the flow is in a negative sense, i.e. the flow 
is reversed in direction. When S, < S ,  the flow is in a positive sense again. As 
S tends to infinity, the flow becomes identical with that of a Newtonian fluid 
with a coefficient of viscosity A2qo/Al. If a > 4, the direction of flow does not 
change over the whole range of values of S. 

FIGURE 1. The variation of (Dl with S ,  showing critical values of S at which the steady 
secondary flow changes direction. ( 1 )  Elastico-viscous fluid with v = 8. (2) Elastico- 
viscous fluid with v = 4. (3) Newtonian fluid (u = 1). 

The solutions (48) and (49) are given in graphical form. Figure 2 shows the 
dimensionless radial velocity @' of the steady secondary flow in the elastico- 
viscous cases G = 3, t and the Newtonian case (a = I) ,  under each of the con- 
ditions ( a )  R, = 25, S = 0.5, ( b )  R, = 100, S = 3, ( c )  R, = 500, S = 10. Com- 
paring these particular elastico-viscous fluids with the Newtonian fluid, we 
observe that, as predicted above, if S < S, or S > S,, only the magnitude of $' 
is changed as a decreases; but if S ,  < S < S,, the direction of $' is also changed. 

Figure 3 depicts, schematically, typical streamlines (r2$ = 0.02) in each of 
the elastico-viscous cases a = +, + and the Newtonian case (a = 1)  under the 
conditions R, = 500, S = 10. In the Newtonian case and the elastico-viscous 
case a = 4, fluid is expelled near the disc x = 0 and drawn in near the disk z = 1, 
but in the elastico-viscous case a = 3, the reverse effect takes place. The general 
shape of the streamlines is only slightly affected by the elastic properties of the 
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fluid, even though the direction of flow is strongly dependent on the magnitudes 
of cr and 8. 

We conclude that for certain values of the elastic constant cr, namely g < 9,  
there is a critical range of values of X in which the direction of the steady second- 
ary flow is reversed compared with that in a Newtonian fluid. The predicted 
reversal phenomenon is a sort of Weissenberg effect and it clearly arises because 

P 
( b )  

FIGURE 2 .  For legend see p. 185. 
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FIGURE 2. The variation of the dimensionless radial velocity with the dimensionless 
distance across the gap in the steady secondary flow when (a)  R, = 25,  S = 0.5; ( b )  
R, = 100, S = 2; (c )  R, = 500, S = 10. (1) Elastico-viscous fluid with (r = +. (2) Elastico- 
viscous fluid with B = 4. (3) Newtonian fluid ( B  = 1) .  

- 0.5 

I I I I 
1 2 3 4 

r 

FIGURE 3. Typical streamlines (+$ = 0.02) of the steady secondary flow when R, = 500, 
S = 10. (2) Elastico-viscous fluid with a = $. 
(3) Newtonian fluid (a = 1). 

(1) Elastico-viscous fluid with B = 5. 

of the rotational nature of the motion of the disks. The extra tension along the 
streamlines induced by shearing remains non-negative throughout each period of 
oscillation and has the effect of squeezing the fluid in certain regions towards the 
axis of symmetry. I n  favourable circumstances this effect overwhelms the ex- 
pected ‘ centrifugal force ’ effects. 
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Bhatnagar & Rajeswari (1962) found that a similar reversal of the direction of 
the steady secondary flow is a characteristic feature of the R,ivlin-Ericksen 
fluid. It appears that the main difference between the results of the present 
paper and those of Bhatnagar & Rajeswari is that these authors showed that 
it is always possible to find a value of the Reynolds number, above which their 
type of flow is reversed in direction. It must be remembered that the fluids con- 
sidered by Bhatnagar & Rajeswari show retarded response to applied stress, 
but do not show relaxation of stress at constant strain; also the normal stress 
differences do not correspond to a simple tension along the streamlines. It is 
not, therefore, surprising that flow of the elastico-viscous fluids considered here 
should show some distinctive features. 

The author wishes to thank Professor J. G. Oldroyd for many valuable com- 
ments and suggestions and also the Department of Scientific and Industrial 
Research for the award of a Research Studentship. 
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